Basisprüfung Lineare Algebra

Wichtige Hinweise

- Zweistündige Prüfung.
- Erlaubte Hilfsmittel: 20 A4-Seiten eigene Notizen (von Hand oder mit dem Computer geschrieben). Taschenrechner sind NICHT erlaubt.
- Alle Aufgaben werden gleich gewichtet.
- Begründen Sie jeweils Ihre Aussagen. Nicht motivierte Lösungen (ausser bei der Multiple-Choice-Aufgabe) werden nicht akzeptiert!
- Tragen Sie die Lösung der Aufgabe 6 (Multiple Choice) auf dem Extrablatt ein.

a) Gegeben sei die Tridiagonalmatrix

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 8 & 1 & 2 & 0 & 0 \\ 0 & 7 & 1 & 3 & 0 \\ 0 & 0 & 6 & 1 & 4 \\ 0 & 0 & 0 & 5 & 1 \end{pmatrix}$$

Bestimmen Sie die Matrizen L, R, P der LR-Zerlegung von A.

b) Zeigen Sie, dass für das charakteristische Polynom einer 2×2 -Matrix A gilt:

$$P_A(\lambda) = \lambda^2 - (\operatorname{Spur} A)\lambda + \det A$$

(Spur $A = a_{11} + a_{22}$).

2. Die vier Punkte in \mathbb{R}^3 (Koordinaten x, y, z)

$$P_1 = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$
 , $P_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $P_3 = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$, $P_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

liegen fast auf einer Ebene z = ax + by + c, das heisst

$$2a + c = 0$$

$$b + c = 0$$

$$c = 2$$

a + b + c = 1.

Bestimmen Sie a, b, c in \mathbb{R} im Sinne der kleinsten Quadrate.

3. Gegeben sei die Matrix

$$A = \begin{pmatrix} 8 & 4 & -3 \\ -6 & -3 & 2 \\ 12 & 6 & -5 \end{pmatrix}$$

und der Vektor

$$x = \begin{pmatrix} -1\\2\\1 \end{pmatrix} .$$

Berechnen Sie $y = A^{100}x$.

4. a) Bestimmen Sie die allgemeine Lösung des linearen Differentialgleichungssystems $\dot{y} = Ay$ mit

$$A = \begin{pmatrix} -1 & -1 & 1\\ 0 & 2 & 0\\ 0 & 2 & 0 \end{pmatrix} .$$

- **b**) Bestimmen Sie die Menge der Lösungen des linearen Differentialgleichungssystems $\dot{y} = Ay$ aus Teilaufgabe **a**), die für $t \to \infty$ beschränkt bleiben.
- 5. Die Matrix

$$A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & \alpha & -1 \\ 0 & 1 & 2 \end{pmatrix}$$

beschreibt eine lineare Abbildung von \mathbb{R}^3 nach \mathbb{R}^3 .

- a) Für welche Werte des reellen Parameters α ist die Abbildung nicht umkehrbar?
- **b**) Bestimmen Sie für $\alpha = \frac{1}{2}$
 - (i) den Rang von A,
 - (ii) die Eigenwerte $\lambda \neq 0$ von A.
 - (iii) eine Basis des Kerns sowie eine Basis des Bildes von A.

6. Multiple Choice:

- a) Für Vektoren u, v, w aus einem Vektorraum V gilt: Sind u, v, w linear unabhängig, so sind auch u, v linear unabhängig.
- **b**) Die folgenden Vektoren sind linear abhängig:

$$\begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}.$$

- c) Es sei A eine reelle $m \times n$ Matrix und $b \in \mathbb{R}^m$. Ist Ax = b lösbar, so gilt span $\{a^{(1)}, \ldots, a^{(n)}\} = \text{span}\{a^{(1)}, \ldots, a^{(n)}, b\}$, wobei $a^{(i)}$ die i-te Spalte von A bezeichnet.
- **d**) Der Vektor $x=\begin{pmatrix}0\\1\\1\\0\end{pmatrix}$ schliesst mit $\begin{pmatrix}1\\1\\0\\1\end{pmatrix}$ den Winkel von $\pi/2$ ein.
- e) Sei \mathcal{P}_2 der Vektorraum der Polynome vom Grad ≤ 2 . Die Polynome $P_1(x) = x, \ P_2(x) = (x+1)^2, \ P_3(x) = x^2+1, \ P_4(x) = (x-1)^2$ sind linear unabhängig.
- **f**) Für eine orthogonale $n \times n$ -Matrix A gilt, $||A||_2 = 1$.

g) Sei V ein reeller, endlichdimensionaler Vektorraum mit Skalarprodukt (\cdot,\cdot) und y ein gegebener Vektor aus V. Die Abbildung $f:V\mapsto\mathbb{R}$

$$f(x) = (y, x)$$
 für alle $x \in V$

ist linear.

h) Wir betrachten die Singulärwertzerlegung $A=USV^T$ der Matrix

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 3 & 0 \end{pmatrix}.$$

Es gilt

$$S = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 5 & 0 \end{pmatrix}.$$

Viel Erfolg!